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Abstract. We discuss how the thermodynamical Legendre transform structure can be retained not only
for the arbitrary entropic form but also for the arbitrary form of the energy constraints by following the
discussion of Plastino and Plastino. The thermodynamic relation between the expectation values and the
conjugate Lagrange multipliers are seen to be universal. Furthermore, Gibbs’ fundamental equation is
shown to be unaffected by the choice of the entropy and the definition of the mean values due to the
robustness of the Legendre transform structure.

PACS. 05.70.-a Thermodynamics – 05.90.+m Other topics in statistical physics, thermodynamics,
and nonlinear dynamical systems

1 Introduction

There exists subtleness in understanding the relation be-
tween thermodynamics and statistical mechanics. Nowa-
days, on the other hand, some alternative entropic func-
tionals to the conventional Boltzmann-Gibbs-Shannon
(BGS) entropy have been investigated, applied to a va-
riety of physical situations. Among them, as one example,
Tsallis’ information measure Sq = (1−

∫
dxfq)/(q−1) [1,2]

where q is a real parameter characterizing Sq is at-
tracting much attention. Thermostatistics based on this
nonextensive measure has been shown to be useful for
describing anomalous systems involving long-range inter-
actions, long-term memory effect and (multi)fractal-like
structure (see [3] for concrete applications). Another ex-
ample is Fisher’s information measure I =

∫
dx(f ′2/f)

where f is a normalized probability distribution [4]. The
connection between derivation of the variety of statisti-
cal laws of physics and the principle of minimum I has
been shown [5]. In view of these examples, there is in-
creasing interest in exploring the possibility of the asso-
ciated thermodynamics with non-BGS entropies. In this
sense, therefore, a certain mathematical relation among
thermodynamical variables is considered to be in a crucial
position in discussing the applicability of the alternative
context.

The Legendre transform structure (LTS) [7–9] is con-
sidered to be a most fundamental relation which as-
sociates the phenomenologically based thermodynamics
with the microscopically based statistical mechanics. Re-
cently Plastino and Plastino [10,11] showed that the LTS
is a universal property independent of the selection of the
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entropic functional if only we adopt the linear definition
of an expectation value of observables. That is, weighting
each quantity with the probability corresponding to the
configurational states preserves the LTS for an arbitrary
form of the entropy functional. At the present stage, it
should be of interest to investigate the structure against
a nonlinear definition of the mean value in a plurality of
constraints.

In this paper, our discussion requires only the Jaynes
maximum entropy principle [13–15]. Jaynes’ information
theoretical approach to statistical mechanics based on
Shannon’s extensive measure with a linear weighting of
quantities as a mean value have been successfully ex-
tended to Fisher’s information measure ([6] and refer-
ences therein). Moreover it is well known that Tsallis’
nonextensive measure with a nonlinear weighting has the
LTS [2,16,17]. Therefore overall discussion based on the
generic form of the entropy and a mean value with general
weighting would illuminate the thermodynamical struc-
tures. It is the purpose of our present attempt to develop
arguments along the line of the previous approach as men-
tioned above.

2 The thermodynamical relation in general
context

We start with a consideration of what relation we have
between an entropy and energies when we adopt the ar-
bitrary form of entropy functional and the energy con-
straints with respect to a probability set. This problem
was considered for the case of the canonical ensemble,
that is, with one energy constraint to the entropy to be
extremized [10]. We deal with the generalized entropy
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S({pi}) and the generalized expectation value of observ-
ables (generalized energy) Eσ({pi}, {Mσ

i }), where pi de-
notes a probability of the microstate i of a quantity Mσ

i ,
(i = 1, · · · ,W ). The superscript σ labels a constraint num-
ber (σ = 1, · · · , N). We usually suppose N < W since we
treat a huge number of microstates W . The important
thing is that the information we have at first is the N
mean values Eσ and each pi is not a priori known. The
probability pi should be given in terms of the Jaynes max-
imum entropy principle instead. Extremization of S with
respect to pi subject to N generalized energy and the nor-
malization condition of the probability leads to

δ

δpi

(
S −

N∑
σ=0

βσE
σ

)
= 0 (1)

where we have introduced the N + 1 Lagrange multipliers
βσ ,(σ = 0, · · · , N) and set E0 =

∑W
i pi = 1, i.e.

∂S

∂pi
−

N∑
σ=0

βσ
∂Eσ

∂pi
= 0. (2)

Since the solution in equilibrium p∗i should be of the form
p∗i = p∗i (β0(β1, . . . , βN ), β1, . . . , βN ) with the normaliza-
tion of p∗i , we have the partial derivatives of S and Eσ

with respect to the µ-th Lagrange parameter,

∂S

∂βµ
=

W∑
i=1

∂S

∂p∗i

(
∂p∗i
∂βµ

+
∂p∗i
∂β0

∂β0

∂βµ

)
, (3)

and

∂Eσ

∂βµ
=

W∑
i=1

∂Eσ

∂p∗i

(
∂p∗i
∂βµ

+
∂p∗i
∂β0

∂β0

∂βµ

)
, (4)

respectively. After multiplying equation (4) by βσ and
summing over σ, one finds

N∑
σ=0

βσ
∂Eσ

∂βµ
=

W∑
i=1

N∑
σ=0

βσ
∂Eσ

∂p∗i

(
∂p∗i
∂βµ

+
∂p∗i
∂β0

∂β0

∂βµ

)

=
W∑
i=1

∂S

∂p∗i

(
∂p∗i
∂βµ

+
∂p∗i
∂β0

∂β0

∂βµ

)
=

∂S

∂βµ
, (5)

which gives the generalized thermodynamical relation that
connects the arbitrary form of the entropy and the mean
values, i.e.

∂S

∂Eσ
=

N∑
ν=0

∂S

∂βν

∂βν
∂Eσ

=
N∑
ν=0

N∑
µ=0

βµ
∂Eµ

∂βν

∂βν
∂Eσ

= βσ (σ 6= 0). (6)

N = 1 corresponds to the canonical ensemble theory and
gives the fundamental thermodynamical relation [10],

∂S

∂E
= β. (7)

The above relation constitutes the basis of the justification
that the Lagrange multiplier β appearing in the equilib-
rium statistical mechanics based on the BGS entropy is
identified with the inverse temperature in thermodynam-
ics. However, we stress that this thermodynamical rela-
tion is very robust in a general context if only there is
one energy constraint. Although we give no explicit form
of the entropy S({p∗i }) in the present consideration, the
condition of extremization with respect to each Lagrange
multiplies when fixing general energies is to be required,
namely,

∂S{p∗i}
∂βµ

∣∣∣
E1,··· ,EN

= 0. (8)

3 Legendre transform structure

Consider now the following general entropic form

S =
W∑
i=1

f(pi), (9)

where a measure f(pi) is an arbitrary function of the prob-
ability {pi} and we do not have to require the concav-
ity property which is needed in physical stability in the
following discussion. It should be noted that one form
f(pi) = −pi ln pi is the BGS measure when we choose
Boltzmann’s constant as the information unit and another
form f(pi) = (pi − pqi )/(q − 1), (q ∈ R) is the Tsallis
one. Moreover let us define the mean value of quantities
(eigenvalues){Mσ

i } in the following way,

〈Mσ〉 =
W∑
j=1

gj(p1, . . . , pW )Mσ
j (σ = 1, · · ·N), (10)

where gj(p1, . . . , pW ) determined by all probabilities is
a weighting function for eigenvalues Mσ

j . In an ordinary
case, we should constrain gj as being

∑W
j=1 gj = 1 from

a physically acceptable definition of the mean value (the
mean value of unity should be unity). As a specific form
of gj , an escort type of probability [8] satisfies this condi-
tion (hereafter referred to as a weighting condition) as a
weighting function,

gj(p1, . . . , pW ) =
φ(pj)∑W
i=1 φ(pi)

(11)

where φ(pj) is a positive test function defined for all pj ∈
[0, 1]. It is worth noting that the special test function of the
form φ(pj) = pqj constitutes the generalized expectation
value in Tsallis statistical mechanics [2]. In the present
consideration, however, we weigh the eigenvalues with an
general gj to proceed to a discussion. We will as a result
see that our conclusion can be derived even without the
weighting condition.

The variational approach applied to extremizing
equation (9) in this context is quite similar to the one
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developed in Section 2

δ

δpi

S − α W∑
i=1

pi −
N∑
σ=1

βσ

W∑
j=1

Mσ
j gj(p1, . . . , pW )

 = 0

(12)

where α and βσ (σ = 1, · · · , N) are Lagrange multipliers
again yielding

f ′(pi)− α−
N∑
σ=1

βσ

W∑
j=1

∂gj(p1, . . . , pW )
∂pi

Mσ
j = 0. (13)

The prime denotes the derivative with respect to pi. For a
given set of eigenvalues {Mσ

j }, we define Q as a function
of the probability set {pi} and the Lagrange multipliers
set {βσ} as follows,

Q({pi}, {βσ}) =
W∑
j=1

N∑
σ=1

βσM
σ
j gj(p1, . . . , pW ) . (14)

Then the equation which determines the equilibrium prob-
abilities {p∗i } becomes

P (pi) = α+
∂

∂pi
Q({pi}, {βσ}), (15)

where we put f ′(pi) = P (pi). Although the explicit form
of the solution {p∗i } is not obtained from the above, we can
pursue further discussion along the line of [10] by regard-
ing the solution as {p∗i ({βσ}σ=1,... ,N )}. Therefore, the S
and the 〈Mσ〉 read

S =
W∑
i=1

f(p∗i ) (16)

and

〈Mσ〉 =
W∑
j=1

gj(p∗1, . . . , p
∗
W )Mσ

j (17)

respectively. From this we immediately have

∂S

∂βσ
=

W∑
i=1

f ′(p∗i )
∂p∗i
∂βσ

(18)

and

∂〈Mµ〉
∂βσ

=
W∑
j=1

W∑
i=1

∂gj(p∗1, . . . , p
∗
W )

∂p∗i

∂p∗i
∂βσ

Mµ
j . (19)

We are considering the Legendre transform of the en-
tropy S

L[S] = S −
N∑
σ=1

∂S

∂〈Mσ〉〈M
σ〉. (20)

To evaluate the above, let us calculate the derivatives
of the general entropy S in equilibrium with respect to
both βσ and 〈Mσ〉. With equation (15) and equation (18),
∂S/∂βσ becomes

∂S

∂βσ
=

W∑
i=1

(α+
∂Q

∂p∗i
)
∂p∗i
∂βσ

=
W∑
i=1

∂Q

∂p∗i

∂p∗i
∂βσ

(21)

where we have used the relation arising from the normal-
ization condition

W∑
i=1

∂p∗i
∂βσ

=
∂

∂βσ

W∑
i=1

p∗i = 0. (22)

Then from equation (14), equation (21) immediately
leads to

∂S

∂βσ
=

N∑
µ=1

βµ

 W∑
i=1

W∑
j=1

Mµ
j

∂gj(p1, . . . , pW )
∂p∗i

∂p∗i
∂βσ


=

N∑
µ=1

βµ
∂〈Mµ〉
∂βσ

· (23)

Therefore we have

∂S

∂〈Mσ〉 =
N∑
ν=1

∂S

∂βν

∂βν
∂〈Mσ〉 =

N∑
ν=1

N∑
µ=1

βµ
∂〈Mµ〉
∂βν

∂βν
∂〈Mσ〉

= βσ. (24)

Thus, we again see that equation (23) and equation (24)
maintain the same relations as equation (5) and
equation (6), respectively, as expected. Equation (23)
(Eq. (5)) expresses Euler’s theorem in the general con-
text [10,18]. Equation (24) (Eq. (6)) represents a general
thermodynamical relation where the Lagrange multipli-
ers and the mean values constitute conjugate variables
with each other with respect to S. It should be noted
that this thermodynamical relation (namely, reciprocity
relation [10], which corresponds to the one relating the
intensive parameters with the extensive parameters in or-
dinary thermodynamics) is seen to be independent of both
the entropy functional and the mean energy form.

Since the entropy S can be described either with
an entire set of 〈Mσ〉’s as S({〈Mσ〉}), or with βσ’s as
S({βσ}) due to the reciprocity relation, if we regard S
as S({〈Mσ〉}), the derivative of L[S] with respect to βσ
becomes

∂L[S]
∂βσ

=
N∑
ν=1

∂S

∂〈Mν〉
∂〈Mν〉
∂βσ

−
N∑
ν=1

βν
∂〈Mν〉
∂βσ

− 〈Mσ〉

= −〈Mσ〉 (25)

where we have used ∂S/∂〈Mν〉 = βν . In a similar way, if
we regard the S as S({βσ}), that is,

L[S] = S({βσ})−
N∑
σ=1

βσ〈Mσ〉({βσ}) (26)
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then the derivative of L[S] with respect to 〈Mσ〉 gives

∂L[S]
∂〈Mσ〉 =

N∑
ν=1

∂S

∂βν

∂βν
∂〈Mσ〉 −

N∑
ν=1

∂βν
∂〈Mσ〉〈M

ν〉 − βσ

= −
N∑
ν=1

∂βν
∂〈Mσ〉〈M

ν〉

= −
N∑
ν=1

∂2S

∂〈Mσ〉∂〈Mν〉〈M
ν〉 (27)

where we have used
N∑
ν=1

N∑
µ=1

βµ
∂〈Mµ〉
∂βν

∂βν
∂〈Mσ〉 = βσ (28)

in the first term of the first line.
Further, from equation (24), equation (25) we have

∂〈Mσ〉
∂βσ

= −∂
2L[S]
∂β2

σ

=
1
∂2S

∂〈Mσ〉2
· (29)

To guarantee the uniqueness of the LTS, that is, from
a requisition that ∂L[S]/∂βσ and ∂S/∂〈Mσ〉 are to be
monotonic functions, we assume

∂2L[S]
∂β2

σ

6= 0,
∂2S

∂〈Mσ〉2 6= 0. (30)

As indicated by equation (29), we see that when the S is
convex, then the L[S] is concave, and vice versa in general
context. From the equations (24, 25, 29), we can stress
that the LTS is preserved both for an arbitrary form of
the entropy and for the general definition of the mean
value.

4 Gibbs’ fundamental equation

We have found that the given mean values 〈Mσ〉 and the
associated Lagrange multipliers βσ are “thermally conju-
gated” [8] with each other in general context. This relation
(Eq. (24)) for all σ can be written in the following form

dS =
N∑
σ=1

βσd〈Mσ〉, (31)

which is called Gibbs’ fundamental equation [8,9]. The
concrete expression for equation (31) in thermodynamics
is well known as

dS =
1
T

dU +
p

T
dV − µ

T
dN. (32)

We should notice that, in the conventional phenomenolog-
ical thermodynamic picture, the entropy S, the internal
energy U , the volume V and the particle number N are
regarded as extensive parameters and the coefficients (T :
temperature, p: pressure, µ: chemical potential) are inten-
sive parameters, however, Gibbs’ fundamental equation
holds independently of the entropic form (extensive or
nonextensive) and of the definition (linear or nonlinear)
of the expectation value.

5 Summary and conclusion

We have derived the thermodynamical relation between
the entropy and the energy in the most general circum-
stance (Eq. (24)) along the line of [10]. Furthermore, we
have shown that the Legendre transform structure is a ro-
bust structure against the choice of the statistical entropic
measure and the way of weighting for energy eigenstates
of the system under consideration. As a necessary con-
sequence of this structure, Gibbs’ fundamental equation
is also independent of the present extension into the ar-
bitrariness. These results are supported by the ubiqui-
tous property of the Jaynes maximum entropy principle.
The construction of a statistical mechanics whose basis
should be consistent with the conventional thermodynam-
ics, therefore, is considered to be not adequate with the
preservation of the LTS and Gibbs’ fundamental equation
alone, which of course are essential ingredients for realiza-
tion. The present conclusion is considered to be consistent
with results of reference [12] which took another route for
discussing arbitrary thermostatistics.

The author acknowledges referees for useful remarks and com-
ments and the adjudicator for suggesting how to revise this
paper from its original.
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